Best Practices in Commercial ENERGY EFFICIENCY

Presented by:

William Walsh Environmental Hygiene Services Business Manager Nalco Company

- Nalco Company Overview
- Purpose, Design & Operation of HVAC Systems
- Chilled Water System Best Practices
- Coil Cleaning Best Practices
- Air Filtration Best Practices
- Key Solutions to Consider

Nalco Overview

- Nalco is the world leader in water treatment and process improvement applications, providing services, chemicals and equipment to industrial and institutional customers
- \$4.3 Billion Dollars In Global Sales
- Customer base is diversified across multiple industries

More than 60,000 customer locations

Business is divided into three core divisions:

-Water and Waste Process Services (WPS)

-Energy Services (Energy)

-Paper Services (Paper)

 6,000 strong degreed engineering sales force supports customers in approximately 139 countries

Nalco's Sustainability Commitment Community, General Public & Investors

Nalco and hundreds of other major corporations are members of the United Nations Global Compact, the world's largest corporate citizenship and social responsibility organization

Nalco is one of 58 members of the United Nations Global Compact who's CEOs have made a further commit for their companies to support and advance water sustainability solutions.

Enhancing World Wildlife Fund's (WWF) ability to deliver on water conservation by supporting WWF's efforts to establish credible water stewardship standards.

Nalco and the Nalco Foundation support Water For People, a non-profit international development organization supporting locally sustainable drinking water resources, sanitation facilities, and health and hygiene education programs in developing nations.

Nalco is one of 317 companies listed on the Dow Jones Sustainability World Index which tracks the financial performance of the leading sustainability-driven companies worldwide.

Purpose, Design & Operation of HVAC Systems

- Remove heat & humidity from air
- Control temperature & humidity in air
- Keep the air environment safe from harmful contaminants (CO2, etc.) IEQ
- Designed to work efficiency with chilled and cooling water systems

HVAC is Integral to Cooling Systems

Cooling Water Treatment Programs

- Water is an excellent medium for the transfer and exchange of heat and BTUs.
- It is readily available and abundant in most regions
- Water requires treatment for controlling scale, corrosion and microbio activity.

Areas for Improvement

- WATER savings through increased cycles
- ENERGY savings keep chiller tubes clean

Traditional Approach in Chemical Control

Nassau - November 4, 2011

Latest Automation = Improved Control

Time

Optimizes program automatically

Technological Value => Customer Value eROI Water Savings vs. Cycles

Cooling Water Savings Assessment									
	Input	Values		Calculated Operational Metrics					
Input		Value	Units Result		Value	Units			
Current CT Cycles		4.5		Evaporation Rate		gpm			
Potential CT Cycles		7.5	Drift Rate		0.6	gpm			
Delta Temperature		10.0	°F Current Makeup (MU)		68.9	gpm			
Recirculation Rate (R)		6,300	gpm Potential Makeup (MU)		61.8	gpm			
Drift Rate		0.01%	% of R Current Blowdown (BD)		15.3	gpm			
Evaporation Factor		0.85	Potential Blowdown (BD)		8.2	gpm			
Operating Days		365	d/y						
MU W	/ater Cost	1.50	USD/1000 gal	Current MU Water Cost	6.20	USD/h			
BD W	/ater Cost	3.00	USD/1000 gal	Potential MU Water Cost	5.56	USD/h			
Evapo	ration Credit in Use?	Y	Y or N	Current BD Water Cost	2.75	USD/h			
Evap.	Credit Available?	Ý	YorN	Potential BD Water Cost	1.48	USD/h			
Annual Savings Summary									
	Supp		10j001 A, 00	1200, 000 = 1.0	Overall	Units			
						gph			
			vater Savind	2S = \$16,702/vr	1.91	USD/h			
		1			45.76	USD/d			
	79	5,567	11,135	Yearly Cycles Cost Savings	16,702	USD/y			
Spin (spin)	24		84,438	Current Evap Credit Savings	84,438	USD/y			
uls 9			84,438	Potential Evap Credit Savings	84,438	USD/y			
The	50		<u>Pa</u>	later Costs and Savings Summa	v				
	• + + + + +	Supply	Discharge		Overall	Units			
		54,281	24,125	Current Costs	78,406	USD/y			
	20 	48,714	12,990	Potential Costs	61,704	USD/y			
	54 49	5,567	11,135	Savings	16,702	USDAy			
	Annualized Environmental ROI (e ^{ROI})								
				2 711 545	Annual Sav	16 702			
Car	NACONS DATE STREET			5.111.545		10,702			

Technological Value => Customer Value ROI Energy Savings

How Does HVAC Inefficiency Impact Your Bottom Line?

Cooling Water Norms									
Energy Increase from Condenser/Evaporator Scale									
\$/kWh	0.01 inch causes +10%	0.02 inch causes +20%	0.03 inch causes +30%	0.04 inch causes +40%					
\$0.12	\$10,800	\$21,600	\$32,400	\$43,200					
\$0.16	\$14,400	\$28,800	\$43,200	\$57,600					
\$0.20	\$18,000	\$36,000	\$54,000	\$72,000					
\$0.24	\$21,600	\$43,200	\$64,800	\$86,400					
Calculations based on design 0.75 kW/ton, 500 tons, 12 hr/d, and 200 d/yr operations.									

• Water Treatment Control Equipment – Latest Capabilities

- Automated cycle control
- Automated chemical use
- Bio-Reporter, automated biocide usage
 - Feed based on bio-activity
- Chemistry Always evolving
 - Chemistry to control corrosion & scale
 - Patented chemistry to control microbio
 - Non-heavy metal closed loop treatment : advanced chemistry options with excellent corrosion control results (PSO)

HVAC is Integral to Cooling Systems

Purpose, Design & Operation of HVAC Systems

Types of Air Handling Units (AHU)

- PTAC (Packaged Terminal Air Conditioner)
- Packaged Unit
- Built-up Unit

- Preventative Maintenance (preventive or convenience?)
- Scheduled in Advance (are schedules kept?)

HVAC Systems

- Lube/belts/motor balance/duct leaks/inspections/etc.
 (does all the work get completed? Inspected? Repaired?)
- Filters (scheduled changing clean or dirty filters?)
- Coil cleaning? (does it get completed? Deep cleaning?)

Coil Cleaning Practices

Coil condition effects on system performance

Sources of DIRT in coils

- ✓ Dirt
- ✓ Process contamination
- ✓ Bacteria
- ✓ Water
- Packed dirt from improper cleanings

DIRT effects on COIL System Performance

DIRT

- ...creates back-pressure, increasing energy requirement
- ...reduces surface area of coils in contact with air
- ...reduces the amount of **air flowing** through the system
- ...reduces heat transfer efficiency of coils
- ...does not make it possible to meet cooling requirements
- ... provides the environment for **bacteria, mold and fungus to grow**
- ...can cause the need for **expansion** of HVAC system to meet
 demand, increased demand on chillers

Coil Cleaning Practices Coil Cleaning Process

Traditional coil cleaning

- Chemical sprayer
- Foaming spray
- Pressure washer
- Harmful chemicals

Coil Cleaning Practices Coil Maintenance – Best Practices

- SAFETY first !
- Lube/belts/motor balance/duct leaks/ inspections...
- Proper equipment & method to prevent fin damage
- Use of neutral pH chemicals (non corrosive)
- Cleaning chemicals applied with optimum pressure for full coil penetration
- Biocide to control odor-causing bacterial and algae growth
- Monitor Performance to maintain efficiency
- Protect coils with an adequate filtration solution

Copyright 2011 – All Rights Reserved

Coil Cleaning Practices Coil Cleaning Process – Case Study

Bahamas Home & Builders Tradeshow Nassau - November 4, 2011 -

Coil Cleaning Practices Coil Cleaning Example – Energy Savings

Direct Measurement – Fan Energy Only:

Coil Cleaning Practices

Factors affecting Coil Cleaning FREQUENCY

- Filtration
 - MERV rating (=filter efficiency)
 - Air by-pass (it accelerates dirt to coil)

Type of contamination

- Typical outside air (or process contamination)
- Hours of operation

Typical Cleaning Frequency: Once a Year

- Centered around energy conservation
- Minimizing waste of all kinds
- Utilizing high efficient equipment
- Operating systems efficiently

BENEFITS of Best Practices

Energy conservation

- Fan energy reduction (Realized from reduction in pressure in system)

 Thermal energy savings (Realized from sensible heat load improvement)

- Waste Minimization
- Efficient System Operation (sustained energy conservation)

Air Filtration Practices Performance Improvement Opportunities

Air Filtration Practices Performance Improvement Opportunities

Air Filtration Practices How DIRTY are your filters?

Bahamas Home & Builders Tradeshow Nassau - November 4, 2011

27

Air Filtration Practices Air Filtration Technology

Face Loading

Depth Loading

More Media Area Needed

Less Media Area Needed

Air Filtration Practices Filtration Upgrade Example

Days

- Reduced fan energy (annual estimated >\$17K
- Less filter change outs saves >\$4K annually
- Significantly less waste going to landfill

Air Filtration Practices Air Filtration Best Practices

- Understand your filtration needs
- Use efficient filters

Predictive Maintenance

- Use end-of-life determined by manufacturer (Design maximum pressure drop at design air flow rate)
- Use performance monitoring to predict filters end-of-life

Don't change clean filters ! Don't leave dirty filters in place!

ASW Engineering, Air Handling Systems Feb. 2003

Air Filtration Practices BENEFITS of Best Practices

Cleaner and more AIR with less ENERGY

- <u>Lower fan energy</u> consumption by providing low pressure drop and high performance filtration
- <u>Reduced maintenance</u> by keeping HVAC coils cleaner
- <u>Reduced life cycle costs by providing longer life</u>
- <u>Waste</u> volume reduction
- <u>Reduced labor on filter change outs</u>
- Lower allergen particle concentrations
- Improved Indoor Air quality
- Results based program

The Role of the Government in Energy Efficiency

- British Columbia, Canada: Energy demand currently outpacing energy production.
 Solution = rebate program to pay for 45% to 50% of the cost of energy reduction programs
- Southern California, USA: Energy and Water Shortages. Solution = state funding for chemical automation control linked to increased cycles of concentration or use of recycled "purple" water.

How Do You Know Your System is Operating Properly/Efficiently?

- Know the design specifications
- Measure & document where you're operating vs. design
- Determine efficiency improvements based on design and determine plan for improvement
- Measure & document improvements
- Document your improvement gains & value/ROI

Any Questions?

Thank you for your attention!

